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Abstract

The harmonic oscillator with dissipation is studied within the framework of the Lindblad

theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck

equation, obtained from the master equation for the density operator, is solved for the Wigner
distribution function, subject to either the Gaussian type or the &function type of initial

conditions. The obtained Wigner functions are two-dimensional Gaussians with different

widths. Then a closed expression for the density operator is extracted. The entropy of

the system is subsequently calculated and its temporal behaviour shows that this quantity

relaxes to its equilibrium value.

1 Introduction

In the last two decades, the problem of dissipation in quantum mechanics, i.e. the consistent

description of open quantum systems, was investigated by various authors [1, 2, 3, 4, 5]. Because

dissipative processes imply irreversibility and, therefore, a preferred direction in time, :t i_ gen-

erally thought that quantum dynamical semigroups are the basic tools to introduce dissipation

in quantum mechanics. In the Markov approximation the most general forni of the generators

of such semigroups was given by Lindblad [6]. This formalism has been studied for the case of

damped harmonic oscillators [7, 8, 9] and applied to various physical phenomena, for instance, the

damping of collective m(_des in deep inelastic collisions in nuclear physics [10] ,_nd the interaction

of a two-level atom with the electromagnetic field [11].

In the present work, also dealing with the damping of the harmonic oscillator within the Lind-

blad theory for open quantum systems, we will explore the physical aspects of the Fokker-Planck

equation which is the c-number equivalent equation to the master equation for the density opera-

tor. Generally the master equation gains considerably in clarity if it is represented in terms of the

Wigner distribution function which satisfies the Fokker-Planck equation. It is worth mentioning

that these master and Fokker-Planck equations agree in form with the corresponding equations

formulated in quantum optics [12, 13, 14, 15, 16].
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The content of the paper is arranged as follows. In Sec. 2 we review the derivation of the

master equation of the harmonic oscillator. In Sec. 3 we transform the master equation into the

Fokker-P!anck equation by means of the well-known methods [17, 18, 19]. Then the Fokker-Planck

equation for the Wigner distribution, subject to either the Gaussian type or the 6-function type

of initial conditions, is solved by the Wang-Uhlenbeck method. Sec. 4 derives an explicit form of

the density operator involved in the Lindblad master equation, formulates the entropy using the

explicit form of the density operator and discusses its temporal behaviour. Finally, concluding

remarks are given in Sec. 5.

2 Master equation for the damped harmonic oscillator

The rigorous formulation for introducing the dissipation into a quantum mechanical system is that

of quantum dynamical semigroups [2, 3, 6]. According to the axiomatic theory of Lindblad [6],

the usual yon Neumann-Liouville equation ruling the time evolution of closed quantum systems

is replaced in the case of open systems by the following equation for the density operator p:

d¢,(p) _ L(¢,(p)). (1)
dt

Here, _t denotes the dynamical semigroup describing the irreversible time evolution of the open

system in the SchrSdinger representation and L the infinitesimal generator of the dynamical semi-

group qh. Using the structural theorem of Lindblad [6] which gives the most general form of the

bounded, completely dissipative Liouville operator L, we obtain the explicit form of the most

general time-homogeneous quantum mechanical Markovian master equation:

dp( t )
- L(p(t)) = --_[H,p(t)] + E([Vjp(t), Vj+1 + [Vj p(t)Vj+]). (2)dt

J

Here H is the Hamiltonian of the system and the operators Vj and Vj+ are bounded operators on

the Hilbert space of the Hamiltonian.

We should like to men_ion that the Markovian master equations found in the, literature are
of this form after some rearrangement of terms, even for unbounded Liouville oplerators. In this

connection we assume that the general form of the master equation given by (2) is also valid for

unbounded Liouville operators.

In this paper we impose a simple condition to the operators H, Vj, Vj+ that they are functions

of the basic observables _ and i5 of the one-dimensional quantum mechanical system (with [4,i 5] =

ih) of such kind that the obtained model is exactly solvable. A precise version for this last

condition is that linear spaces spanned by first degree (respectively second degree) noncommutative

polynomials in (_ and i5 are invariant to the action of the completely dissipative mapping L. This

condition implies [7] that Vj are at most first degree polynomials in _ and 15 and H is at most a

second degree polynomial in _ and i5. Then the harmonic oscillator Hamiltonian H is chosen of
the form

H = Ho + -_(qp + Pgl), Ho = 2m + --2--q " (3)
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With thesechoicesthe Markovian masterequationcanbe written [8]:

2__ idp i [U0, p] - (_ + ,)['_, PP + hP] + _(_ - U)[b, P4 + @]at-

Dpp. Dqq D.q ([_, [ib, p]] + [ib, [_, pl]), (4)
[4,pl]- p]]+ h2

where Dpp, Dqq and Dpq are the diffusion coefficients and _ the friction constant. They satisfy the

following fundamental constraints [8]:

_2h2

i) Dpp > 0, ii) Dq_ > 0, iii) DvvDqq - D_q > ---4-- (5)

In the particular case when the asymptotic state is a Gibbs state

H

pa(oc) = e-_/Tre-_, (6)

these coefficients reduce to

+ _ hm_ coth hw
DPv - 2 2k---T'

)_-/t h coth hw Dpq=0, (7)
Dqq - 2 mw 2k---T'

where T is the temperature of the thermal bath.

3 Wigner distribution function

One useful way to study the consequences of the master equation (4) for the density operator

of the one-dimensional damped harmonic oscillator is to transform it into more familiar forms,

such as the equations for/the c-number quasiprobability distributions Glaube_ P, antinormal

ordering Q and Wigner W associated with the density operator [20]. In this case the resulting

differential equations of the Fokker-Planck type for the distribution functions can be solved by

standard methods [17, 19, 21] employed in quantum optics and observables directly calculated as

correlations of these distribution functions.

The Fokker-Planck equation, obtained from the master equation and satisfied by the Wigner

distribution function W(xl, x2, t) of real variables xl, x2 corresponding to the operators 4,i5

rn/-_ 1 (8)xl = q, x2- _p,

has the form [20]:

OW _ 1 0 2'--_-[-: __, aq (xjW)+-_ E Q'Woz-_xjW'
i,j=l,2 i,j=l,2

(9)

where

A (._-# -w ), Qw l(mwDqq Dpq ) (10)w ._ + # = -h Dpq Dpv/mw "
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Since the drift coefficients are linear in the variables wl and x2 and the diffusion coefficients are

constant with respect to xl and z2, Eq. (9) describes an Ornstein-Uhlenbeck process [22, 23].

Following the method developed by Wang and Uhlenbeck [23], we shall solve this Fokker-Planck

equation, subject to either the wave-packet type or the 6-function type of initial conditions.

1) When the Fokker-Planck equation is subject to a Gaussian (wave-packet) type of the initial

condition (xl0 and z20 are the initial vaAues of wa and z2 at t = 0, respectively)

Ww(xl,x2,0) = -_ exp{-2[(xl - xl0) 2 + (x2 - x20)2]}, (11)

the solution is found to be

W,o(x,,x2, t)- fl exp{- 1
_h_ ]_/'_w[ ____[(_w(X 1 _ _,)2 _)t_ _w(X 2 _ _.2) 2 .__ Xw(x 1 _ ._l)(X 2 _ _2)]},(12)

where

__ __ d21 2 * ttae2A' + (e 2At- 1), g3 ----2[e -2:_t + -_--(1 -- e-2_t)], (13)B_ =gig2- _93, 91 =92 = w

Cw = gl a*2 3r- g2 a2 -- g3, _w = gl 3f_ g2 -- g3, Xw ---- 2(gla" "3t- 92 5) -- g3(a .3f. a'). (14)

We have put a = (# - i_)/w,A = -A - i_ and dl = (a2mo.,Dqq + 2aDpq + Dpp/mw)/h, d2 =

(rnwDqq + 2ttD_q/_ + Dpp/mw)/h and f_2 = w2 _ tt2. The functions 5:1 and 22, which are also

oscillating functions, are g!ven by
i # 03

_l = e-At[xlo(cosat -39_ sinat)+ X2o_ sin f_t], (15)

/_ w sin l_t]. (16)_2 = e-Xt[x20(cosl2f- _ sin fit)- X,o_

2) If the Fokker-Planck equation (9) is subject to the *-function type of initial condition, the

Wigner distribution function is given by'

1 )2 x2) 2+xd(xl xl)(/2 x2)]}, (17)
W(x"x2'*) -- 7f_o3 _/i--_7_exp{---e[$d(Xl -- Xlvit5[ + _fld(X2 -- -- _

where

B = f,A-f , f_= J_= _--2-_(e2At-- 1), f3= _-_3-2(1--e-2_t), (18)

_'d -= fl + f2 - 213, Xa = 2[f,a* + f2a - f3(a + a*)]. (19)¢d = .2 + f2a 2 - 2f3,

So, the Wigner functions are 2-dimensional Gaussian distributions with the average values xl and
x2 and different widths.

When time t _ oo, xa and 5:2 vanish and we obtain the +teady state solution:

1 exp[--_
W(Xl'X2)---- 2rv/detaW(oc) Z ((7W)_J I((:X:))xixj]" (20)

i,j=l,2

The stationary covariance matrix aw(oc) can be determined from the algebraic equation

AaW(oc) + crw(oc)A T = QW. (21)

278



4 Entropy and effective temperature

Entropy is a quantity which may be visualized physically as a measure of the lack of knowledge

of the system. When we denote by p(t) the density operator in the SchrSdinger picture for the

harmonic oscillator, the entropy S(t) is given by

S(t) = -kTr(p In p). (22)

For calculating the entropy we shall compute straightway the expectation value of the logarithmic

operator < In p >= Tr(pln p). Accordingly, the problem amounts to derive the explicit form of

the density operator for the damped harmonic oscillator.

To get the explicit expression for the density operator, we use the relation p = 27rhN{Ws(q, p)},

where W_ is the Wigner distribution function in the form of standard rule of association and N

is the normal ordering operator [17, 24] which acting on the function Ws(q,p) moves all p to

the right of the q. By the standard rule of association is meant the correspondence pmq,_ _+

_'_/_"_ between functions of two classical variables (q, p) and fimctions of two quantum mechanical

canonical operators (_,,5). The calculation of the density operator is then reduced to a problem of

transformation of the Wigr_er distribution function by the N operator, provided tl_at Ws is known.

A special care is necessary for the N operation when the Wigner function is in the exponential form

of a second order polynomial of q and p. ['he Wigner distribution fimction previously obtained

corresponds however to the form of the Weyl rule of association [25]. The solution (12) of the

Fokker-Planck equation (9), subject to the wave-packet type of initial condition (11) can be written

in terms of the coordinate and momentum as:

1 exPl-2-_[_(q- < 0 >)2 + g,(p_ < 15>)2 _ 2x:(q- < 0 >)(P- < i5 >)]},D_(q,p,t)- 27rv/_ _

where

2h

(23)

(24)

O=crpp=<{2> _ <_>2_
_,_,2 'I

e .... (25)

h_O 2

0 - aqq =< _b2 > - </3 >2_ mw¢,,, (26)4_ 2

(27)

and < A >= Tr(p/i) denotes the expectation value of an operator A. The Wigner distribution

function (23) can be transformed into the form of standard rule of association [26] by

0 2

W_(q,p) = exp(_ih o--_)W(q,p).
(28)

279



Upon performing the operation on the right-hand side, we get the Wigner distribution function

W,, which has the same form as the original W multiplied by h but with X - ih/2 in place of X.

The normal ordering operation of the Wigner function W, in Gaussian form carl be carried out by

applying McCoy theorem [24, 27, 28]. The explicit form of the density operator is the following:

where

h2h 1 1 cosh_l( 1 + )

p= _exp[_ln__ hx ' 2h_/_-ih X'+ ¼h2 2(_-ihx' )

× {¢(__ < _ >)2 + _b(ib- < ib >)2 _ (X' + ih)[2(q- < q >)(/_- < ib >) - _h]}], (29)

h

=¢¢-_'2, k,=x_i T. (30)

J

The density operator (29) is in a Gaussian form, as was expected from the initial form of the

Wigner distribution function. While the density operator is expressed in terms of operators _ and

/_, the Wigner distribution is a function of real variables q and p. When time t goes to infinity, the

density operator approaches to

h_ _ exp[- l---_ ]n 2v/-__ [O'pp(OO)q 2 JV Orqq(OO)fi 2 --Orpq((X))(qfiJVpq)], (31)

where a = app(cc)aqq(oo)- a_q(oo) and [8]:

1

app(c_) = 2A(A 2 + w 2 ((mw)2w2Dqq + (2A(A - g)+J)Dpp - 2mw2(A - #)Dpq),#2)
(32)

=
1

((mw)2(2A(A + #) + w2)Dqq + w2Dp,, + 2mw2(A + #)Dpq), (33)
2(rt_w)2A(A 2 + _2 #2)

i

%q(oo) = 2mA(A2 + w 2 (-(A + #)(mw)2Dqq + (A - #)Din, + 2m(A 2 -/_2)Dpq).#2)

In the particular case (7)

(34)

h hw hmw hw

O'qq(CX:_)- 2m., coth 2-_' ap.(cx_) - 2 coth 2--_' a.q(cx_) = 0 (35)

and the asymptotic state is a Gibbs state (6):

UPG(_) = 2sinh 2-_ (2m + _2)] (36)
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Becauseof the presence of the exponential form in the density operator, the construction of the

logarithmic density is straightforward. In view of the relations (25-27), the expectation value of

the logarithmic density becomes

h= 2v +h h.
(37)

By putting hu = x/_- h/2, we finally get the entropy in a closed form:

S(t) = k[(u + l)ln(v + i) - vlnv]. (38)

It is worth noting that the entropy depends only upon the variance of the Wigner distribution.

When time t --+ c¢, the function v goes to s = a_(d]/A 2 -]d,12/(A 2 + a2))'/2/2a - 1/2 and the

entropy relaxes to its equilibrium value S(ec) = k[(s + 1) ln(s + 1 ) - s Ins]. It should also be noted

that the expression (38) has the same form as the entropy of a system of harmonic oscillators

in thermal equilibrium. In the later case v represents, of course, the average of the number

operator [29]. While the formal expression (38) for the entropy has a well-known appearance, the

form of the function v displays clearly a specific feature of the present entropy. We see that the

time dependence of the entropy is represented by the damping factor exp(-2At) and also by the

oscillating function sin2(f_t). The entropy relaxes to its equilibrium value S(oc).

5 Concluding remarks

Recently we assist to a revival of interest in quantum Brownian motion as a paradigm of quantum

open systems. There are many motivations. The possibility of preparing systems in macroscopic

quantum states led to the problems of dissipation in tunneling and of loss of quantum coher-

ence (decoherence). These problems are intimately related to the issue of quantum-to-classical

transition. All of them point the necessity of a better understanding of open quantum systems

and all requires the extension of the model of quantum Brownian motion. The Lindblad the-

ory provides a selfconsistent treatment of damping as a possible extension of quantum mechanics

to open systems. In the present paper we have studied the one-dimensional harmonic oscillator

with dissipation within the framework of this theory. From the master equation of the damped

quantum oscillator we have derived the corresponding Fokker-Planck equation in the Wigner W

representation. The obtained equation describes an Ornstein-Uhlenbeck process. By using the

Wang-Uhlenbeck method we have solved this equation for the Wigner function, subject to either

the Gaussian type or the 3-function type of initial conditions and showed that the Wigner func-

tions are two-dimensional Gaussians with different widths. Then we have obtained the density

operator. The density operator in a Gaussian form is a function of q,i_ in addition to several

time dependent factors. The explicit form of the density operator has been subsequently used to

calculate the entropy. It relaxes to its equilibrium value.

References

[1] R. W. Hasse, J. Math. Phys. 16, 2005 (1975)

281



[2] E. B. Davies, Quantum Theory of Open Systems (Academic Press, New York, 1976)

[3] H. Spohn, Rev. Mod. Phys. 52,569 (1980)

[4] H. Dekker, Phys. Rep! 80, 1 (1981)
l

[5] K. H. Li, Phys. Rep. 134, 1 (1986)

[6] G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

[7] G. Lindblad, Rep. Math. Phys. 10, 393 (1976)

[8] A. Sandulescu and H. Scutaru, Ann. Phys. (N.Y.) 173, 277 (1987)

[9] A. Sandulescu, H. Scutaru and W. Scheid, J. Phys. A - Math. Gen. 20, 2121 (1987)

[10] A. Isar, A. Sandulescu and W. Scheid, J. Phys. G - Nucl. Part. Phys. 17, 385 (1991)

[11] A. Sandulescu and E. Stefanescu, Physica A 161,525 (1989)

[12] G. S. Agarwal, 'Phys. Rev. A 4, 739 (1971)

[13] C. W. Gardiner and M. J. Collet, Phys. Rev. A 31, 3761 (1985)

[14] C. M. Savage and D. F. Walls, Phys. Rev. A 32, 2316 (1985)

[15] T. A. B. Kennedy and D. F. Walls. Phys. Rev. A 37, 152 (1988)

[16] N. Lu, S. Y. Zhu and G. S. Agarwal, Phys. Rev. A 40, 258 (1989)

[17] W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973)

[18] H. Haken, Rev. Mod. Phys. 47, 67 (1975)

[19] C. W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1982)

[20] A. Isar, W. Scheid and A. Sandulescu, J. Math. Phys. 32, 2128 (1991)

[21] H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984)

[22] G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930)

[23] M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945)

[24] R. M. Wilcox, J. Math. Phys. 8, 962 (1967)

[25] H. Weyl, The Theory of Group and Quantum Mechanics (Dover, New York, 1950)

[26] C. L. Mehta, J. Math. Phys. 5,677 (1964)

[27] J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949)

[28] S. Jang, Physica A 175,420 (1991)

[29] G. S. Agarwal, Phys. Rev. A 3, 828 (1971)

282


